Karakteristik kolektor surya pelat datar aliran spiral menggunakan metode simulasi cfd

Authors

  • Ahmad Yonanda Universitas Lampung, Indonesia
  • Amrizal Amrizal Universitas Lampung, Indonesia

DOI:

https://doi.org/10.33292/ost.vol1no1.2021.20

Keywords:

Kolektor surya, Pressure drop, Spiral, Serpentine, Temperatur

Abstract

Kolektor surya pelat datar sering digunakan dalam memanfaatkan energi surya. Kolektor ini memiliki keuntungan yaitu dapat menyerap dengan baik radiasi matahari. Untuk mengkarakteristik unjuk kerja kolektor surya dapat digunakan metode Computational Fluid Dynamic (CFD). CFD memberikan kemudahan untuk menganalisis karakterisrik aliran fluida. Tujuan dari penelitian ini adalah melihat karakteristik unjuk kerja termal dan pressure drop kolektor surya pelat datar aliran spiral dan serpentine menggunakan CFD. Langkah-langkah yang dibutuhkan dalam proses simulasi CFD meliputi: desain dan name selection geometri. meshing. pemilihan metode radiasi. pemilihan jenis material dan input kondisi batas. Kemudian proses validitas dilakukan terhadap hasil simulasi dengan cara membandingkan dengan data eksperimen aliran serpentine. Langkah selanjutnya mensimulasikan kolektor surya pelat datar aliran spiral dengan metode CFD kemudian hasilnya dibandingkan dengan hasil data simulasi aliran serpentine. Hasil penelitian ini menunjukan bahwa untuk jenis aliran spiral setiap kenaikan laju aliran massa sebesar 0.005 kg/s maka temperatur maksimal fluida kerja akan mengalami penurunan sebesar 2°C. Kemudian pada laju aliran massa terbesar yaitu 0.02 kg/s. pressure drop maksimal fluida kerja (air) ialah 1339 Pa. Penggunaan jenis aliran spiral pada kolektor surya pelat datar akan meningkatkan nilai temperatur keluar fluida kerja (Tout) sebesar 3.14 % dan menurunkan temperatur permukaan kolektor sebesar 6.4 %   serta   pressure drop fluida sebesar 15.08 %.

Flat plate solar collectors are often used in harnessing solar energy. This collector has the advantage of being able to absorb solar radiation well. To characterize the performance of the solar collector. the Computational Fluid Dynamic (CFD) method can be used in the present study. CFD provides benefits for analyzing fluid flow characteristics. The purpose of this research is to characterize the thermal performance and pressure drop of spiral and serpentine tube solar collectors using the CFD method. The steps required in the CFD simulation process include the design and selection of geometry names. meshing. radiation planning. selection of material types and input conditions of boundary conditions. Then the validity process is carried out and compared to those obtained from experimental data. The next step is to simulate for both the thermal performance and pressure drop of spiral and serpentine flow solar collectors flat using the CFD method. In comparison with the serpentine flow type. the use of the spiral flow type on the flat plate solar collector will increase the value of the outlet working fluid temperature (Tout) by 3.14%. Otherwise. the use of the spiral flow type will reduce collector surface temperature by about 6.4 % respectively and the pressure drop of working fluid by about 15.08%.

Author Biographies

Ahmad Yonanda, Universitas Lampung, Indonesia

Jurusan Teknik Mesin, Fakultas Teknik, Universitas Lampung, Indonesia

Amrizal Amrizal, Universitas Lampung, Indonesia

Jurusan Teknik Mesin, Fakultas Teknik, Universitas Lampung, Indonesia

References

Allan, J., Dehouche, Z., Stankovic, S., & Mauricette, L. (2015). Performance Testing of Thermal and Photovoltaic Thermal Solar Collectors. Energy Science & Engineering, 3(4), 310-326. https://doi.org/10.1002/ese3.75

ANSYS Fluent Release 18.1. (2017). “ANSYS Fluent Tutorial Guide R18.1”. SAS IP. Inc. All Rights Reserved. www.Ansys.com.

Corrocher, N., & Cappa, E. (2020). The Role of Public Interventions in Inducing Private Climate Finance: An Empirical Analysis of The Solar Energy Sector. Energy Policy, 147, 111787. https://doi.org/10.1016/j.enpol.2020.111787

Dong F. Y., Xu, S., Guo, W., Jiang, N R., Han, D. D., He X.Y., Zhang, L., Wang Z.J., Feng, J., Su, W., & Sun, H B. (2020). Solar-Energy Camouflage Coating with Varying Sheet Resistance. Nano Energy, 77, 105095. https://doi.org/10.1016/j.nanoen.2020.105095

Duffie, J.A. & W.A. Beckman. (1980). Solar Engineering of Thermal Processes. New York: John Wiley and Sons.

Ismail (2016). Unjuk Kerja Kolektor Surya Pelat Datar Aliran Serpentine Berdasarkan Jenis Elbow dan Jarak Pipa. Tugas Akhir Teknik Mesin .UNILA. Bandar Lampung.

Kalogirou, S. A. (2003). Solar Energy Engineering. Processes and System. 2nd Edition. Elsevier Ltd.

Sandeep. (2016). Solar Energy Potential and Future Prospects. The Federal University of Technology. Nigeria.

Souissa, M. (2009). Proyeksi Potensi Energi Surya Sebagai Energi Terbarukan. Tugas Akhir Teknik Mesin. Universitas Pattimura. Ambon.

Tsvetkov, N. A., Krivoshein, U. O., Tolstykh, A. V., Khutornoi, A. N., & Boldyryev, S. (2020). The Calculation of Solar Energy Used By Hot Water Systems in Permafrost Region: An Experimental Case Study for Yakutia. Energy, 210, 118577. https://doi.org/10.1016/j.energy.2020.118577

Verma, SK., Sharma, K., Gupta, N K., Soni, P., & Upadhyay, N. (2020). Performance Comparison of Innovative Spiral Shaped Solar Collector Design with Conventional Flat Plate Solar Collector. Energy, 194, 116853.

Wang, C.C., Chi, K. Y., & Chang, C. J. (2000). Heat Transfer and Friction Characteristics of Plain Fin-And-Tube Heat Exchangers, Part II: Correlation. International Journal of Heat and Mass Transfer, 43(15), 2693-2700. https://doi.org/10.1016/S0017-9310(99)00333-6

Yonanda, A. (2018). Simulasi Unjuk Kerja Termal Dan Pressure Drop Kolektor Surya Pelat Datar Aliran Serpentine Menggunakan Metode CFD. Universitas Lampung. Bandar Lampung. Lampung.

Downloads

Published

2021-04-30

How to Cite

Yonanda, A., & Amrizal, A. (2021). Karakteristik kolektor surya pelat datar aliran spiral menggunakan metode simulasi cfd. Open Science and Technology, 1(1), 129–142. https://doi.org/10.33292/ost.vol1no1.2021.20