The Influence of Bridge Maintenance Strategies to Extend Service Life in Civil Engineering: A Meta-Analysis Study
DOI:
https://doi.org/10.33292/ost.vol4no2.2024.138Keywords:
Civil Engineering Infrastructure, Bridge Maintenance, Service Life, Maintenance StrategiesAbstract
Pemeliharaan jembatan merupakan elemen krusial dalam manajemen infrastruktur teknik sipil untuk memastikan keberlanjutan fungsi struktural dan keselamatan pengguna. Penelitian ini bertujuan untuk menganalisis secara meta-analitis pengaruh berbagai strategi pemeliharaan jembatan terhadap perpanjangan umur layanannya. Data diambil dari 15 studi yang mencakup strategi pemeliharaan preventif, prediktif, korektif, hingga rehabilitasi penuh, serta penggunaannya pada jembatan dengan beragam kondisi lingkungan dan material. Hasil meta-analisis menunjukkan bahwa strategi pemeliharaan jembatan memiliki pengaruh signifikan terhadap perpanjangan umur layanannya dengan nilai ( d= 0.825 ; p < 0.001) kategori effect size yang tinggi. Temuan ini memberikan informasi penting dalam pemeliharaan jembatan dalam teknik sipil.
Bridge maintenance is a crucial element in civil engineering infrastructure management to ensure the sustainability of structural functions and user safety. This study aims to conduct a meta-analytical analysis of the impact of various bridge maintenance strategies on extending their service life. Data were collected from 15 studies covering preventive, predictive, corrective maintenance strategies, and full rehabilitation, as well as their application to bridges with diverse environmental conditions and materials. The results of the meta-analysis indicate that bridge maintenance strategies have a significant impact on extending their service life, with a high effect size (d = 0.825; p < 0.001). These findings provide important insights into bridge maintenance in civil engineering.
References
Alex. (2009). Parametric Model for Assessing Factors that Influence Highway Bridge Service Life.
Almomani, H., & Almutairi, O. N. (2020). Life-cycle maintenance management strategies for bridges in kuwait. Journal of Environmental Treatment Techniques, 8(4), 1556–1562. https://doi.org/10.47277/JETT/8(4)1562
Asnur, L., Jalinus, N., Faridah, A., Apra, T., Ambiyar, R. D., & Utami, F. (2024). Video-blogs ( Vlogs ) -based Project?: A Meta Analysis. 14(5), 1553–1557.
Badawi et al. (2023). Integration of Blended Learning and Project-Based Learning (BPjBL) on Achievement of Students’ learning goals: A Meta-analysis study. Pegem Journal of Education and Instruction, 13(4). https://doi.org/10.47750/pegegog.13.04.32
Balogun, T. B. (2018). Integrating Bridge Maintenance Life Cycle Assessments into Bridge Design for Improved Sustainable Decision Making. Ph D UK, 247.
Barone, G., & Frangopol, D. M. (2014). Reliability, risk and lifetime distributions as performance indicators for life-cycle maintenance of deteriorating structures. Reliability Engineering and System Safety, 123, 21–37. https://doi.org/10.1016/j.ress.2013.09.013
Biondini, F., & Frangopol, D. M. (2016). Life-Cycle Performance of Deteriorating Structural Systems under Uncertainty: Review. Journal of Structural Engineering, 142(9), 1–17. https://doi.org/10.1061/(asce)st.1943-541x.0001544
Borenstein, M., Hedges, L., & Rothstein, H. (2007). Introduction to Meta-Analysis. www.Meta-Analysis.com
Brito, J. de, & Branco, F. A. (1998). Concrete Bridge Management: From Design to Maintenance. Practice Periodical on Structural Design and Construction, 3(2), 68–75. https://doi.org/10.1061/(asce)1084-0680(1998)3:2(68)
Cables, T. B., & Wang, D. (2022). SS symmetry Numerical Modeling of Ice Accumulation on Natural Wind Conditions.
Consoli, N. C., Rosa, A. D., & Saldanha, R. B. (2013). Crack-Healing Investigation in Bituminous Materials. Journal of Materials in Civil Engineering, 25(7), 864–870. https://doi.org/10.1061/(ASCE)MT.1943-5533
Dewanto, D., Wantu, H. M., Dwihapsari, Y., Santosa, T. A., & Agustina, I. (2023). Effectiveness of The Internet of Things (IoT)-Based Jigsaw Learning Model on Students’ Creative Thinking Skills: A- Meta-Analysis. Jurnal Penelitian Pendidikan IPA, 9(10), 912–920. https://doi.org/10.29303/jppipa.v9i10.4964
Fernandes, J. N. D., Matos, J. C., Sousa, H. S., & Coelho, M. R. F. (2022). Life Cycle Analysis of a Steel Railway Bridge over the Operational Period considering Different Maintenance Scenarios: Application to a Case Study. Advances in Civil Engineering, 2022. https://doi.org/10.1155/2022/3010001
Fiore, A., Liuzzi, M. A., & Greco, R. (2020). Some shape, durability and structural strategies at the conceptual design stage to improve the service life of a timber bridge for pedestrians. Applied Sciences (Switzerland), 10(6). https://doi.org/10.3390/app10062023
Gervásio, H., da Silva, L. S., Perdigão, V., Orcesi, A., & Andersen, R. (2015). Influence of Maintenance Strategies on the Life Cycle Performance of Composite Highway Bridges. Structural Engineering International, 25(2), 184–196. https://doi.org/10.2749/101686614X14043795569978
Han, X., Yang, D. Y., & Frangopol, D. M. (2021). Optimum maintenance of deteriorated steel bridges using corrosion resistant steel based on system reliability and life-cycle cost. Engineering Structures, 243. https://doi.org/10.1016/j.engstruct.2021.112633
Ichsan, I., Suharyat, Y., Santosa, T. A., & Satria, E. (2023). Effectiveness of STEM-Based Learning in Teaching 21 st Century Skills in Generation Z Student in Science Learning: A Meta-Analysis. Jurnal Penelitian Pendidikan IPA, 9(1), 150–166. https://doi.org/10.29303/jppipa.v9i1.2517
Li, L., Lu, Y., & Peng, M. (2022). Deterioration Model for Reinforced Concrete Bridge Girders Based on Survival Analysis. Mathematics, 10(23). https://doi.org/10.3390/math10234436
Liao, S., Peng, J., Wang, L., & Zhang, J. (2024). Optimization of maintenance program for bridge cable in service lifetime. Bridge Maintenance, Safety, Management, Digitalization and Sustainability - Proceedings of the 12th International Conference on Bridge Maintenance, Safety and Management, IABMAS 2024, 2791–2796. https://doi.org/10.1201/9781003483755-331
Liu, S. S., Huang, H. Y., & Kumala, N. R. D. (2020). Two-stage optimization model for life cycle maintenance scheduling of bridge infrastructure. Applied Sciences (Switzerland), 10(24), 1–26. https://doi.org/10.3390/app10248887
Long, L., Alcover, I. F., & Thöns, S. (2022). Utility analysis for SHM durations and service life extension of welds on steel bridge deck. Structure and Infrastructure Engineering, 18(4), 492–504. https://doi.org/10.1080/15732479.2020.1866026
Mohamed Mansour, D. M., Moustafa, I. M., Khalil, A. H., & Mahdi, H. A. (2019). An assessment model for identifying maintenance priorities strategy for bridges. Ain Shams Engineering Journal, 10(4), 695–704. https://doi.org/10.1016/j.asej.2019.06.003
Nielsen, D., Raman, D., & Chattopadhyay, G. (2013). Life cycle management for railway bridge assets. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 227(5), 570–581. https://doi.org/10.1177/0954409713501297
Stahl, D., Delong, E., Wagner, M., Jetten, M., & Ramos, J. L. (2009). r P Fo ee r R ev ie w On r P Fo ie w. 2017(1), 1–5.
Tamur, M., Juandi, D., & Kusumah, Y. S. (2020). The effectiveness of the application of mathematical software in indonesia; a meta-analysis study. International Journal of Instruction, 13(4), 867–884. https://doi.org/10.29333/iji.2020.13453a
Wittocx, L., Buyle, M., Audenaert, A., Seuntjens, O., Renne, N., & Craeye, B. (2022). Revamping corrosion damaged reinforced concrete balconies: Life cycle assessment and life cycle cost of life-extending repair methods. Journal of Building Engineering, 52. https://doi.org/10.1016/j.jobe.2022.104436
Yang, S. I., Frangopol, D. M., Kawakami, Y., & Neves, L. C. (2006). The use of lifetime functions in the optimization of interventions on existing bridges considering maintenance and failure costs. Reliability Engineering and System Safety, 91(6), 698–705. https://doi.org/10.1016/j.ress.2005.06.001
Yang, S. I., Frangopol, D. M., & Neves, L. C. (2004). Service life prediction of structural systems using lifetime functions with emphasis on bridges. Reliability Engineering and System Safety, 86(1), 39–51. https://doi.org/10.1016/j.ress.2003.12.009
Youna Chatrine Bachtiar, Mohammad Edy Nurtamam, Tomi Apra Santosa, Unan Yasmaniar Oktiawati, & Abdul Rahman. (2023). the Effect of Problem Based Learning Model Based on React Approach on Students’ 21St Century Skills: Meta-Analysis. International Journal of Educational Review, Law And Social Sciences (IJERLAS), 3(5), 1576–1589. https://doi.org/10.54443/ijerlas.v3i5.1047
Zulkifli, Z., Satria, E., Supriyadi, A., & Santosa, T. A. (2022). Meta-analysis: The effectiveness of the integrated STEM technology pedagogical content knowledge learning model on the 21st century skills of high school students in the science department. Psychology, Evaluation, and Technology in Educational Research, 5(1), 32–42. https://doi.org/10.33292/petier.v5i1.144
Zulyusri, Z., Santosa, T. A., Festiyed, F., Yerimadesi, Y., Yohandri, Y., Razak, A., & Sofianora, A. (2023). Effectiveness of STEM Learning Based on Design Thinking in Improving Critical Thinking Skills in Science Learning: A Meta-Analysis. Jurnal Penelitian Pendidikan IPA, 9(6), 112–119. https://doi.org/10.29303/jppipa.v9i6.3709
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Aris Krisdiyanto, Kemmala Dewi, Tomi Apra Santosa

This work is licensed under a Creative Commons Attribution 4.0 International License.